Computational diversity in the cochlear nucleus angularis of the barn owl.
نویسندگان
چکیده
The cochlear nucleus angularis (NA) is widely assumed to form the starting point of a brain stem pathway for processing sound intensity in birds. Details of its function are unclear, however, and its evolutionary origin and relationship to the mammalian cochlear-nucleus complex are obscure. We have carried out extracellular single-unit recordings in the NA of ketamine-anesthetized barn owls. The aim was to re-evaluate the extent of heterogeneity in NA physiology because recent studies of cellular morphology had established several distinct types. Extensive characterization, using tuning curves, phase locking, peristimulus time histograms and rate-level functions for pure tones and noise, revealed five major response types. The most common one was a primary-like pattern that was distinguished from auditory-nerve fibers by showing lower vector strengths of phase locking and/or lower spontaneous rates. Two types of chopper responses were found (chopper-transient and a rare chopper-sustained), as well as onset units. Finally, we routinely encountered a complex response type with a pronounced inhibitory component, similar to the mammalian typeIV. Evidence is presented that this range of response types is representative for birds and that earlier conflicting reports may be due to methodological differences. All five response types defined were similar to well-known types in the mammalian cochlear nucleus. This suggests convergent evolution of neurons specialized for encoding different behaviorally relevant features of the auditory stimulus. It remains to be investigated whether the different response types correlate with morphological types and whether they establish different processing streams in the auditory brain stem of birds.
منابع مشابه
Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl.
The cochlear nucleus of the barn owl is composed of two anatomically distinct subnuclei, n. magnocellularis (the magnocellular nucleus) and n. angularis (the angular nucleus). In the magnocellular nucleus, neurons tend to respond at a particular phase of a stimulus sine wave. Phase locking was observed for frequencies up to 9.0 kHz. The intensity-spike count functions of magnocellular units are...
متن کاملDifference in response reliability predicted by spectrotemporal tuning in the cochlear nuclei of barn owls.
The brainstem auditory pathway is obligatory for all aural information. Brainstem auditory neurons must encode the level and timing of sounds, as well as their time-dependent spectral properties, the fine structure, and envelope, which are essential for sound discrimination. This study focused on envelope coding in the two cochlear nuclei of the barn owl, nucleus angularis (NA) and nucleus magn...
متن کاملTime and intensity cues are processed independently in the auditory system of the owl.
Space-specific neurons, found in the barn owl's inferior colliculus, respond selectively to a narrow range of interaural time and intensity differences. We show that injecting a local anesthetic into one cochlear nucleus, nucleus magnocellularis, alters the space-specific cell's selectivity for interaural time difference, leaving its selectivity for interaural intensity difference intact. Anest...
متن کاملPhase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba.
The auditory system of the barn owl is an important model for temporal processing on a very fast time scale and for the neural mechanisms and circuitry underlying sound localization. Phase locking has been shown to be the behaviorally relevant temporal code. This study examined the quality and intensity dependence of phase locking in single auditory nerve fibers of the barn owl to define the in...
متن کاملTitle: Variability Reduction in Interaural Time Difference Tuning in the Barn Owl Running Head: Variability Reduction in the Barn Owl's Auditory System
The interaural time difference (ITD) is the primary auditory cue used by the barn owl for localization in the horizontal direction. ITD is initially computed by circuits consisting of axonal delay lines from one of the cochlear nuclei and coincidence detector neurons in the nucleus laminaris (NL). NL projects directly to the anterior part of the dorsal lateral lemniscal nucleus (LLDa) and this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2003